A Linear-Time Algorithm for Computing Inversion Distance between Signed Permutations with an Experimental Study
نویسندگان
چکیده
Hannenhalli and Pevzner gave the first polynomial-time algorithm for computing the inversion distance between two signed permutations, as part of the larger task of determining the shortest sequence of inversions needed to transform one permutation into the other. Their algorithm (restricted to distance calculation) proceeds in two stages: in the first stage, the overlap graph induced by the permutation is decomposed into connected components; then, in the second stage, certain graph structures (hurdles and others) are identified. Berman and Hannenhalli avoided the explicit computation of the overlap graph and gave an O(nalpha(n)) algorithm, based on a Union-Find structure, to find its connected components, where alpha is the inverse Ackerman function. Since for all practical purposes alpha(n) is a constant no larger than four, this algorithm has been the fastest practical algorithm to date. In this paper, we present a new linear-time algorithm for computing the connected components, which is more efficient than that of Berman and Hannenhalli in both theory and practice. Our algorithm uses only a stack and is very easy to implement. We give the results of computational experiments over a large range of permutation pairs produced through simulated evolution; our experiments show a speed-up by a factor of 2 to 5 in the computation of the connected components and by a factor of 1.3 to 2 in the overall distance computation.
منابع مشابه
Sorting Signed Permutations by Inversions in O(nlogn) Time
The study of genomic inversions (or reversals) has been a mainstay of computational genomics for nearly 20 years. After the initial breakthrough of Hannenhalli and Pevzner, who gave the first polynomial-time algorithm for sorting signed permutations by inversions, improved algorithms have been designed, culminating with an optimal linear-time algorithm for computing the inversion distance and a...
متن کاملAn Algorithm to Enumerate Sorting Reversals for Signed Permutations
The rearrangement distance between single-chromosome genomes can be estimated as the minimum number of inversions required to transform the gene ordering observed in one into that observed in the other. This measure, known as "inversion distance," can be computed as the reversal distance between signed permutations. During the past decade, much progress has been made both on the problem of comp...
متن کاملA Linear-Time Algorithm for Computing Inversion Distance between Signed Permuta
Hannenhalli and Pevzner gave the rst polynomial-time algorithm for computing the inversion distance between two signed permutations, as part of the larger task of determining the shortest sequence of inversions needed to transform one permutation into the other. Their algorithm (restricted to distance calculation) proceeds in two stages: in the rst stage, the overlap graph induced by the permut...
متن کاملConsensus Ranking with Signed Permutations
Signed permutations (also known as the hyperoctahedral group) are used in modeling genome rearrangements. The algorithmic problems they raise are computationally demanding when not NP-hard. This paper presents a tractable algorithm for learning consensus ranking between signed permutations under the inversion distance. This can be extended to estimate a natural class of exponential models over ...
متن کاملFinding an Optimal Inversion Median: Experimental Results
We derive a branch-and-bound algorithm to find an optimal inversion median of three signed permutations. The algorithm prunes to manageable size an extremely large search tree using simple geometric properties of the problem and a newly available linear-time routine for inversion distance. Our experiments on simulated data sets indicate that the algorithm finds optimal medians in reasonable tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational biology : a journal of computational molecular cell biology
دوره 8 5 شماره
صفحات -
تاریخ انتشار 2001